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ABSTRACT 

Formulas from Lambert's problem in celestial mechanics are pre- 

sented for use in a computer program to calculate velocity requirements 

for rapid intercept of an earth satellite by a rocket fired from the earth or 

from an orbit about the earth.    The rocket is assumed to receive an impul- 

sive velocity at launch and the effect of impulsive midcourse corrections 

are considered.    The effects of the earth rotation are included if the rocket 

is fired from the earth,   but those due to the earth's atmosphere are ignored. 

The rocket and target satellite are assumed to be moving in conic section 

in the earth's gravitational field. 
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VELOCITY REQUIREMENTS FOR RAPID INTERCEPT 
WITH MIDCOURSE CORRECTIONS 

I. INTRODUCTION 

This technical note documents formulas to be used in a Fortran 

computer program to calculate velocity requirements for rapid intercepts 

of an earth satellite by a rocket fired from the earth or from an orbit about 

the earth.     The rocket is imagined to receive an impulsive velocity at 

launch.     The effect of impulsive midcourse corrections is considered.     The 

effects of the earth rotation are included if the rocket is fired from the 

earth,  but those due to the earth's atmosphere are ignored.     The rocket 

and the satellite are taken to be moving in conic sections in the   —\±/r 

gravitational potential of the earth with higher harmonics ignored,  where  |_i 

is the gravitational constant times the mass of the earth and where    r   is 

the distance from the center of the earth.    Units used in the program are 

kilometers and kilometers per second. 

Input to the program (with names in the program in capital letters) 

are: 

(a) Calendar date:   IMONTH,    IDAY,    IYEAR 

(b) Universal time of rocket firing:   IHR,    IMIN,    SEC 

(c) Coordinates of the launching site (if the rocket is 

launched from the earth) 

p   =    RADIUS   =    distance from center of earth (km) 

9   =    LONG   =    longitude west of Greenwich (deg) 

0  =    LAT   =    north latitude (deg) (1) 

(d) Elliptic orbital elements of the target satellite in the 

coordinate system referred to true equinox and equator 

of date: 

a   =   A   =    semi-major axis  (km) 



e = E   =    eccentricity 

I = INC   =    inclination (deg) 

Cl = ASC   =    right ascension of ascending node  (deg) 

uu = PER   =   argument of perigee (deg) 

M      =   ANOM   =   mean anomaly at time   t      of o o 
rocket firing (2) 

[For the intercept rocket orbit,  which could be hyperbolic or parabolic as 

well as elliptic,  we 

following elements 

well as elliptic,  we use internally in the program instead of   a ,    M      the 

p   =    semi-latus  rectum 

t      =    time of perigee crossing.    ] (3) 
P 

(e) Similar elliptic orbital elements for inital parking orbit 

of the rocket if it is launched from orbit. 

(f) Increments    DVLNCH   of magnitude of velocity at launch 

from an initial possible magnitude   VLNCHO   to a final 

possible magnitude   VLNCHl. 

(g) Errors in the   orbital elements of the target satellite 

(presumed discovered after launch) if midcourse cor- 

rections are considered: 

Aa = DA 

Ae = DE 

AI = DINC 

Aft = DASC 



Aau =    DPER 

AM      =    DANOM 
o 

(h) Epochs after launch at which midcourse impulsive firings 

are possible. 

(i) Increments of magnitude of midcourse velocity change 

from an initial possible magnitude of change to a final 

possible magnitude of change. 

Output from the program are: 

(a) Minimum time to intercept versus magnitude of impulsive 

velocity at launch at the given increments of magnitude of 

velocity at launch; 

(b) For each possible epoch  of midcourse correction and for 

each possible intercept orbit from launch to the original 

target orbit,  the minimum time to intercept the new 

target orbit versus magnitude of impulsive velocity at 

midcourse correction at the given increments of 

magnitude of midcourse velocity change. 

There will be SC4060 graphical output so that by varying the input 

one can see the variation in velocity requirements versus time of intercept 

as a function of target satellite orbit,   launching site or parking orbit,  and 

time of launch. 

In the following we rigorously derive many standard formulas in the 

philosophy that too much documentation of a computer program is better 

than too little. 

II. ROTATION OF THE EARTH 

12       3 Let    (x   ,  x   ,  x  )   be a coordinate system referred to the true equinox 
3 

and equator of date with origin at the center of the earth.     The   x      axis 



points to the north along the axis of rotation of the earth,  the   x     axis lies 
2 

in the equator and points towards the first point of Aries,   and the   x     axis 

completes the right hand system. 

Let    (p,   9,   0)   be the coordinates of the launch  site as defined in    (1). 

Let   s   be the true sidereal time,   i. e. ,  the Greenwich hour angle of the 

first point of Aries.     Then the cartesian coordinates of the launch site are 

1 x        =   P cos 0 cos (s   —   9) 

2 
x        =o cos 0 sin (s   —   9) 

3 
x        =    p  sin 0 (4) 

The velocity of the rocket as it sits at the launch site due to the rotation of 

the earth is 

. 1 
X            = o 

2 ds 
~ x   dF 

.   2 
X             = o 

1 ds 
x  dT 

•   3 
X             = o 

0 (5) 

_      _      _ 12       3 
Let    (e, ,   e   ,   e_)   be unit vectors in the    (x   ,  x   ,  x   )    coordinate 

directions.     The vector from the center of the earth to the launch site is 

r      =   x       e,    +   x       e0    +   x       e_ (o) 
o o       1 o       £• o       3 

and the velocity of the rocket at the launch site due to the rotation of the 

earth is 

•   1 - .   2- 
v     =   x       en    +   x       e_ (7) 

o o       1 o       2 



How is the sidereal time calculated for the given calendar date and 

universal time   UT   of launch?    First we determine the Julian Day  Number 

JD   from the given month,  day and year of launch as given in Ref.   1 , 

Table I,   p.  445.    A computer subroutine can easily  be written to do this 

using the fact that there are   365   days in a year except   366   days in years 

divisible by   4 .     The   Julian Date at midnight beginning of day is then 

JD   —   0.5  .     The Greenwich mean sidereal time    s      at   0      universal time 
o 

on the day of interest is 

h_„m.,-s „-, n   /An   i n,. s r ._ ^    ,    ns nn^nrr.Z 
s 

o 
6   38    45°. 836   +   8, 640, 1 84 . 542T   +   0.0929T (8) 

where    T   denotes the number   of Julian centuries of   36525   days which,  at 

midnight beginning of day,  have elapsed since mean noon on   1900   January   0 

at the Greenwich meridian (Julian Date   2415020.0)  ;    see Ref.   1,   p.  474. 

The Greenwich true sidereal time at a given instant   UT   of universal time 

on that day  is then 

s   =    s      +   ^-  x   UT   +   Af   cos £ (9) 
o dt 

where 

|^   =    (1.002737909265   +   0.589   x   10_1°T) 
dt 

sidereal time seconds per universal time second     (10) 

and where   Ai|/    is the nutation in longitude and   e   the obliquity of the ecliptic; 

see Ref.   2,   pp.   75-76.    We shall ignore the   A<J» cos e term,  whose largest 

magnitude is    if3  .     This has the effect of changing the launch site longitude 

by this amount.     For use in    (5) ,    formula    (10)   for   ds/dt   must be multi- 

plied by   2rr/86,400   to convert to radians per second. 



III. POSITION AND VELOCITY IN A CONIC SECTION 
ORBIT GIVEN THE ORBITAL ELEMENTS 

The equations of motion of a body of negligably small mass in the 

gravitational field of a spherically symmetric earth are 

dt2 

Hr 
3 (11) 

where   \i >   0    is the gravitational constant times the mass of the earth,     r 
1 /? 

is the position vector of the body and   r   =     |r |    =    (r •   r) .     Taking the 

dot product of both sides of   (11)   with   dr/dt   we obtain 

d2? 

d,2 

dr 
dt 

li    -»        dr 
3    r   *   dF 

which implies 

1 d    /dr   t   dr 
2 dt   Idt dt 

1_  JJ_    d(r •  r) d_ (1 
2      3 dt "   ^ dt \r 

Thus we obtain the conservation of energy result 

v 2(^+    C) (12) 

where   v   =    dr/dt   and   C    is a constant of integration.     Taking the cross 
—» 

product of   (11)   with   r   we obtain 

r   x il 
at2 

which implies 

* [** !fi 



Thus we obtain the conservation of angular momentum result 

dr z* 
r  x dF  =   G (13) 

where   G    is a constant vector of integration.     Taking the dot product of   (13) 

with   r    gives 

0 (14) 

which implies that the motion is in a plane perpendicular to   G   and that 

there are only two independent components of   G ,    not three. 

For the moment we exclude the straight line case and assume 

G   ^   0 .    Referring to Fig.   1,   the values of the ascending node   fi  and inclin- 

ation   I   of the orbital plane normal to   G   are given by- 

cos I   = 

cos 

sin 

G    *   e- 

G 

G     •   e. 

0   £  I   <;   180 

n = E- 

n =  -^ 
G     •   e, 

0   s  n < 360 

(15] 

(16) 

—< —> ~~' 1 2 
where   G   =     |G|    and where   G      is the projector of   G   onto the    (x   ,   x   ) 

plane, 

G   -   (G 63)    G3 
(17) 

1        2 
Let    (u   ,   u   )   be the coordinates of the body in a coordinate system 

1 1       2 
with    u     axis being the intersection of the orbit plane with the    (x  ,  x  ) 

2 
plane and with   u       axis in the orbit plane completing the right hand system. 

We define circular coordinates    (r,   l|f )    in the orbit plane by 

1 ~ 
u      =    r cos \|f 

u      =    r sin (18) 



18-6-12966 

Fig.   1,    Relation between inclination  I  and ascending node   fi 
of a plane and the normal  G  to the plane. 



Then    (13)    implies 

r2   U-   =    G at 

and    (12)   implies 

S = k)2 + *Z$Y->(*- + * 
Since 

dr dr   dj;   _   dr     G 
dt ,7   dt ,7      2 d i)f d ijf    r d?  ^ 

(19) 

(20) 

we have 

fe^'•©"•'&•«) 
which implies 

£©-v-$-* +   C 

Let 

We then have 

U G 
M G r 

.2        „ „   .   a" Q"   =    2 C   + ? 

±da  =V^^^ 

which implies 

±   (»|f  —  CJU)   =   arc cos (f^ 



where   m   is a constant of integration.    Since   cos  (+ 9)   =    cos (— Q)   we have 

>s   (l|f    —   U)) F-**5V"+^«» G 

We can have the same curve with a   —   sign as with a   +    sign by changing 

the constant of integration   uu  by   IT.    Therefore, 

2- =   1   +   e cos t|/ (21) 
r 

where 

G2 
p   =      >   0       (semi-latus rectum) (22) 

^ 
I 2G

2 
C     +1       a   0    (eccentricity) (23) 

ou   =    argument of perigee (24) 

•    =    t   _  co   =    (true anomaly) (25) 

We have that   \|r    =    0   at perigee,  the point of closest approach to the earth. 

The   curve represented by   (21)   is one of the following types: 

0 ^ e < 1        ellipse 

e   =    1        parabola 

e   >   1        hyperbola (26) 

with a focus at the   origin. 

We define the semi-major axis   a   by 

—*T <27) 
1   - e 

10 



where 

a   >   0      ellipse 

a   =   oo      parabola 

a   <   0       hyperbola (28) 

From equations    (12),   (22),   (23) and    (27)   we have 

12       3 
Let    (y   ,  y   ,  y  )    be a coordinate system with origin at the center 

1 . . .3 of the earth with   y      axis pointing towards perigee,  with   y     axis normal 
- 2 

to the orbital plane along the angular momentum vector   G ,    and with   y 

axis completing the right hand system (see Fig.   2).     Then we have 

3 
xJ   =      £    b    Y ,       j    =    1,2,3 

k=l     J 

Yk   =     L   b..xJ       •      k  «   1,2,3 (30) 
J=1   J 

where the orthogonal matrix    (b    )    is given by 

b. .    =    cos Q cos u)   —   sin Q sin uu cos I 

b. _    =   —   cos Q, sin cu   —   sin fi cos UJ cos I 

b.       =    sin Q sin I 

h7,    =    sin Q cos uu    +   cos fl sin uu cos I 

b =    —   sin Q sin ou   +    cos Q cos ID  cos I 

11 
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Fig.   2.    Euler angles   I,   J2,   to 
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b__    =   —   cos n sin I 

b. ,    =    sin u) sin I 

b   _    =    cos ou sin I 

b~,    =    cos I (31 

12       3 
(See Ref.   3,   p.   328.)   If    (y   ,   y   ,   y   )    is a point in the orbit of the body, 

3 
y      =    0   and 

1 y      =    r cos !|l 

2 
y      =    r sin if (32) 

By (19)  - (25) and (29) we have 

2 
(**\    + HE =  Jl - l 

r ,dry   •   2     Af -1 ^ 

r2dj; 
dt    -V^P1 (34) 

(35) 
1    +   e cos if 

III-A.    Parabolic Motion 

In the case of parabolic motion,    e   =    1,    a   =   °°  and by (34) and (35) 

1/2   -3/2 
M       p 

J J    (1 + cos iff L    >      ^        J v 

13 



Let   t     be the time of perigee passage when   i|r  =   0 .    We define the mean 

motion   n   and mean anomaly   M   at time   t   by 

1/2     - 3/2 
n    =   |i p (36) 

M   =    n(t   -   t   ) 
P 

(37) 

Then the true anomaly   i|l   at time   t   is determined by  solving the equation 

2M   =    tan £   +   1   tan3   | (38) 

as follows  (see Ref.  4,   p.   26).    Consider the identity 

1\3 
W-$- (^-r) + T^-r) 

with 

tan 2 = x - r 

6M A3   -  K 
x3 

Let 

A.  =   —  tan Y 

-   tan (3 

Then 

p   -   I cot _1  (3M) 

Y   =    ta n-'ftanP)'/3] 

-1 
i|r   =   2 tan      (2 cot 2y) 

0   S  P   s  2 

2        Y        2 

—   TT   ^    t|l    £   TT (39) 

14 



Given the orbital elements    (p,    e = 1,    I,    ^»    UJ,    t   )   we determine 
1       2       3       .1.2.3 P 

the position and velocity   (x   ,  x   ,  x   ,    x   ,  x   ,   x  )   at time   t   by first 
1       2 

determining    ijf   from (37) and (39).    We determine   r   by (35) and    (y  ,   y   ) 
3 

by (32).    We then apply (30) with   y      =    0   to determine the position 

coordinates.     The velocity is given by 

2 , 
*J   =    E     b..y ,       j   =    1,2,3 (40) 

k=l      JK 

where 

w 

•1 dr . ,  dill y =   -j— cos y   —   r sin f -^j- 

• 2 dr dtli 
y =   -jr sm y  +   r cos t|t -rf- (41) 

ith   dr/dt   and   d^/dt   being determined by   (3 3) and (34).    dr/dt   <   0    if 

t   <  t      and   dr/dt   >   0    if   t   >  t    . 
P P 

III-B.     Elliptic Motion 

We now suppose that   0   <   e   <   1    and   a   >   0 .    Equations  (29) and 

(30) imply 

±na/dt   = / rdr (42) 

\a    e      —   (r  - a) 

where the mean motion   n   is defined by 

1/2     - 3/2 
n   =   |i  '    a (43) 

Let   t      be the time of perigee passage and let the mean anomaly   M   at 

time   t   be given by 

M   =    n(t   ~   t   ) (44) 
P 

15 



In terms of the mean anomaly   M      at time   t     we have 
'        o o 

M   =   M      +   n(t - t  ) (45) 
o o 

We define the eccentric anomaly   g   by 

r   =   a(l   - e cos g) (46) 

with   g    =    0   when   t   =   t    .    We have 
P 

dr   =    a e sin g d  g 

and (42) becomes 

M   =    n(t - t   )   =   §   -   e sin § (47) 

The   ±   sign is eliminated by changing the sign of   g   if necessary without 

changing (46).    See Ref.  5,  p.   22. 

Equations (35) and (45) give 

cos ij;   =    1
COS ? ~ e

g (48) T 1   - e cos g 

which  implies 

, . (1   - e)  (1  + cos g) 1    +   cos di    =   - i—— —3J- 
I   - e cos g 

, i (1  + e)  (1   - cos g) 
1     —    COS   tf(     =     - ^—i r-2^- 

1   - e cos g 

These equations may be written 

9 2  t 1   - e _ 2  § 2 cos     *•   =   T =-    •   2 cos     *- 
2 1   - e cos g 2 

,     .   2   * 1 + e _     .   2   g 
2 sin     o     =   "1 5"    *    Z sin     ~- 2 1   - e cos g 2 

16 



Dividing the second equation by the first and taking square roots we obtain 

We have   M =   §   =    ijj   when   i|/   =    0 + 2kn or   i|r   =   rr  +   2krr,    k   any 

integer.    Further,  modulo   Z rr   we have 

0   <  i|r  < TT  implies    0   < §  < rr      ,       0<M<n 

rr <  i|/  < 2 rr  implies   rr <  £  <  2 rr     ,       n<M<2n (5 0) 

which removes any  quadrant ambiguity in determining   ij;   from   5   using 

(49).     The body completes one orbit when   M   increases by   2 rr ,    so that 

orbital period   =     (51) 
n 

Equations  (32),   (46) and (48) imply 

y      =    r cos l|/   =   a(cos §   -    e) (52) 

By (46) and (52) 

22 222 2/ 22 2 
r    sin    i|r   =    r      —   r    cos    ijf  =    a    (1 — 2 e cos §   +   e    cos      g   —   cos     g 

+   2 e cos §   —   e   ) 

I.. 2,     ,   2 
=    a   (1    —   e   ) sin    g 

so that 

-Vi y      =    r sin \Jj   -   a \1   - e    sin g (53) 

because of the relations (50). 

17 



Given the   orbital elements    (p,    0   ^   e   <   1  ,    I,    Q,    au,    t   )   we 
1       2       3     • 1     • 2     • 3 determine the position and velocity   (x,x,x,x,x,x)   at time   t 

by  first determining   M   from (44) and reducing it to be between   0   and   2 TT . 

Then Kepler's equation (47) is solved for   §   using a Newton-Raphson itera- 

tion.    Namely,   if   f(§)    is a function and we wish to find   §   such that 

f(§)   =    M    starting from a nearby value   §     ,    we would define as in Fig.   3 

M o 8   f<50> 

A?o    : 

M - M o 

"    f'<?o> 

Si    : 
-   «o   +   A?o 

(54) 

continuing the Newton-Raphson iteration to define   M    ,    A§,   ,    §_ ,   etc., 

until we converge to   § .    Convergence will occur unless   f"(§)   =    0 .    In 
the specific case of Kepler's equation (47) we take as a first approximation 

2o 

If   e   =    0 ,    nothing further is required.    Otherwise,  as in Ref.   5,   p.   84, 

we let 

M      =   §      —   e sin £ o o ^o 

AS 
M - M o 

o 1   - e cos § 
o 

§!     =   §Q   +   A§0 (modulo   2n) (55; 

continuing the iteration to get   M,   ,    A?,   .    ?2 ,    etc.,  until we obtain a 

value   E     ,     such that    I A?,   I <  e   ,    where   e   is an accuracy constant 

depending on the number of places in floating point computations on the 

18 
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M ^__.__ 

eye 

Fig.   3.     Newton-Raphson technique. 
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computer being used.    We have 

f" (?)   =    e sin § 

which is zero only at   §   =    0   and   §   =   rr   .    Thus the Newton-Raphson 

iteration will converge everywhere except at these two points.     But the 

iteration is not needed at these two points,   because the first guess    §      =    M 

already gives the correct value of   §   . 
1 2 

Having obtained   §   we evaluate    (y  ,    y  )   from (52) and (53) and 
12       3 3 

determine    (x   ,  x   ,  x   )   from (3 0) with   y      =    0 . 

Differentiating (47) with respect to   t   we obtain 

<f . a ,56, 

so that differentiating (52) and (53) we obtain 

Y      -   -  ——    sin § (57) 

., 2*1 2~> 
2         na   VI   - e _ /co. y     =     cos ^ (58) 

The velocity    (x   ,    x   ,    x   )   is then determined by (40). 

Ill - C.    Hyperbolic Motion 

We now suppose that   e   >   1    and   a   <  0 .     Equations   (27) and (33) 

imply 

n|a,/dt   ./ (59) 
r, TTT^ ,  ,2   2i W(r +  | a. |)     -   |a|     e 

20 



where the mean motion   n   is defined by 

!/2    |    i- 3/2 .,.. n   =   |i   '       I a. | (60) 

Let   t     be the time of perigee passage and let the mean anomaly   M   at time t 

be given by 

M   =   n(t   -  t   ) (61) 
P 

We define the eccentric anomaly   §   by 

r   =    |a| (e cosh §  -   1) (62) 

with   F   =    0   when   t   =    t    .    We have 
P 

dr   =     | a | e sinh § d § 

and (59) becomes 

M =    n(t-t)    =    e sinh ?   -   § (63) 
r 

The   ±   sign is eliminated by changing the sign of   §   if necessary without 

changing (62).    See Ref.  4,   p.   27. 

Equations (27),   (35) and (67) give 

. e  - cosh ? ,, .. 
cos  ^/   =    T—r -^rr- 64 T e cosh §   -    1 

which implies 

, i (e -!)(!+ cosh g) 
1    +   cos ik   =   -1 —•—T— —^~ 

e cosh § - 1 

, , (e + 1) (cosh g - 1) 
1   —   cos dr  =   — e cosh § - 1 

21 



These equations may be written 

9 2 1 e - 1 , . 2 E 
2   COS      ir    =     r— :-      •     2   COSh     ~- 

2 e cosh § - 1 2 

•>     •   2 t e + 1 ,    .   ,2? 2 sin    £•  =    q— =-     •   2 sinh    i- 
2 e cosh ?-l 2 

Dividing the second equation by the first and taking square roots we obtain 

tan | = Ip-M"   tanhi- (65) 

We have   M   =    %   =   %   when   ty   =    0 .    Further 

0   <  t|f   < TT  implies    0   <  ^   < °°   >    0<M<°° 

—  n <  i|f   <  0   implies   —  °° < §  <  0   ,    —  °° < M   < 0       (66) 

which removes any quadrant ambiguity in determining   l|f   from   g   using (65) 

Equations  (32),   (62) and (64) implies 

y      =    r cos i|f   =    |a|(e   —   cosh §) (67) 

By (62) and (67) 

2   •   2 , 2 2        2 , I    I2/  2        i2^       •> v.* j    i 2 
r   sin   \|f   =    r      —   r   cos   i|t   =    | a |    (e   cosh   ^ — 2e cosh§ +   1   — e 

2 
+   2e cosh §   —   cosh    §) 

=    |a|2(e2 - 1) sinh2 § 

so that 

y2   =    r sin i|r   =     |a|Ve2   -   1      sinh § (68) 

2Z 



because of the relations (66). 

Given the   orbital elements    (p,    e > 1,    I,    Q,    ti)t    t   )   we determine 

the position and velocity    (x   ,  x   ,  x   ,   x   ,  x   ,  x   )   at time   t   by first deter- 

mining   M   from (61).     Then (63) is solved for   §   using a Newton-Raphson 

iteration (54).    Namely,  we take as a first approximation 

§      =   M      if       |M|    S   1 

§      =    sinh_1(M/e)       if       |M|    >   1 

Then we let 

M      =    e sinh F      —   F o =o = 

A? 
M - M o 

o e cosh F     - 1 -o 

§«   +   AF (69! 

continuing the iteration to get   M, ,    A§, ,    F?,    etc. ,  until we obtain a value 

k+1 5,  , n     such that 

|A5k|    <e      if       |?k+1|    £   1 

,A?k 

fkfiT <e   if    |f*+il 
>! 

where   £   is an accuracy constant depending on the number of places in 

floating point computation on the computer being used.    We have 

f"(Fj   =    e sinh § 
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which  is zero only at   g   =    0 .    Thus the Newton-Raphson iteration will con- 

verge everywhere except at this point.     But the iteration is not needed at 

this point,   because the first guess   §      =   M   already gives the correct value 

of   ? . 
1       2 

Having obtained   §,    we evaluate    (y  ,   y  )   from (67) and (68) and 
12       3 3 

determine    (x   ,  x   ,  x   )   from (3 0) with   y      -    0 . 

Differentiating (63) with respect to   t   we obtain 

dg.   _    nja_ 
dt r 

so that differentiating (67) and (68) we obtain 

2 

(70) 

y1    =    _   nlal      sinh§ (71) 

• 2 naVe-1 .   _ ,-,0, V      =   —!—!    cosh Z (72) 1 r 

100 

The velocity    (x   ,   x   ,   x   )    is then determined by   (40). 

III-D.    Straight Line Motion 

In the case that   G   =    u    (see equation (13)),   the vectors    r   and   v 

are always parallel.     Thus we have 

~* dr_   ? 
V   "    dt     r 

and (12) implies 

=    |f  =    ±>/2^   +   C)' (73) 
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so that if the initial time is    t o 

" 'o   • fdt   "f 
±   dr 

ylz(^ + c) 

±   3C2r2-4C^r+8M2       ,2[i   +   ^   + (?4) 

15C V 

if the velocity  does not change sign between   t      and   t .     Let the initial 

position vector    r       have components 

1 
x        =    r    cos 0 cos 

2 
x        =    r    cos <t sin 9 

o o 

3 
x        =    r     sin 0 (75) 

o o 

Let the initial velocity vector have magnitude   v    .     Then by (73) 

C   =    ljv2   -  ^- (76) 2    o r v     ' 
o 

and by   (73) 

3C?r   Z   -   4Qir     +    8^ 
C,    =    + .    JZIT1~CP (77) 

15CT * 

Let us take as orbital elements in the straight line case 

(r   ,    e   =   °° ,    9,    0,    v  ,    t   ).    Then using the above formulas we can 
o o       o 

1       2       3     .1     »2     .3 
determined    (x   ,  x   ,  x   ,  x   ,  x   ,  x  )   at time   t   from the orbital elements. 

Conversely it is trivial to determine the orbital elements from the position 

and velocity at time   t 

Z5 



The above formulas should be put in better form for computations, 

but since we will really never be concerned with the straight line case, we 

shall not bother to do so. 

IV. DETERMINATION OF CONIC SECTION ORBITAL 
ELEMENTS GIVEN THE POSITION AND VELOCITY 

Suppose we are given the position and velocity   (r   ,   v  )   = o       o 
1 7^1 "? ^ 

(x     ,  x     ,  x     ,  x     ,  x     ,  x     )   at time   t     and wish to determine the vo ooo'oo o 

conic section elements    (p,   e,   I,  H, GO,  t  )   as defined in (2) and (3). 

We first calculate the angular momentum vector as given in (13), 

G   =    r     xv (78) o o 

If   G   =     |G|    =    0 ,    we have the straight line case for which the determina- 

tion of the elements follows easily from the discussion in Section III-D. 

If   G   /    0,    we determine the semi-latus rectum   p   from (22). 

By   (29) we have 

2 

(79) 
1 2 
a r 

and by (27) we have 

e   =    +   ^1    -  \' (80) 

The inclination   I   and ascending node   Q are determined by (15) 

.    If   I   =    0°   or    1 

by convention in this case. 

and (16).    If   I   =    0      or    180    ,    Cl  is indeterminant so we can take   0=0 
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Solving (3 0) and (40) for   b , ,    we have 

b. 
Jl 

b 
J2 

y    y       -  y    y o     o ' o      o 

i • 2 • i   2 
TT"2—n~T  ix y  " x y 

y    y       —  y    y 'o  'o 'oo 

•jl _ J«l 

V    j   =    1,2,3 (81) 

TT~Z n—2~   lx y   " x y 

By (31),  we have for   j    -    3  , 

sin 0) 

cos uu    = 

31 
sin I 

32 
sin I 

(82) 

If   I   =    0      or    180      so that by convention   0=0,    we can use 

sin uu   =   —   b,_    =    ib-i 

cosU)   =    bll    =    ±  b22 (83) 

where the   +    sign of the   ±   sign is to be used if   I   =    0   and the   —   sign is 

to be used if   I   =    180° . 

In order to determine the time of perigee crossing   t      and the com- 

1       2     .1     .2 
ponents of position and velocity in the orbital plane   y   ,   y   ,  y   ,   y      for 

determining the argument of perigee   uo   from (81),   (82) and (83),  we must 

consider three separate cases. 

IV-A.     Parabolic Motion 

If   e   =    1    or if    | e  - 1 |    < e ,    where   e   is an accuracy constant 

depending on the number of places in floating point computations on the 

computer being used,   then we are in the parabolic case and would set 

11 



e   =    1    identically.    Equation (35) is 

r   =    1  + cos  I <84> 

and (33) with   a   =   °°   is 

Differentiating (84) and using (34) we have 

dt        f p sin ill 
P 

We thus have at the initial time   t o 

cos tit     =   -*-  —   1 yo r o 

V2Pro • p2 
sin ^   = I S.  (85) 

o 

from which  ijf      is easily determined with   —  TT  <  i|/      < rr   .     By (3 7) and (38) 

the time   t      of perigee passage is then 

t       =   t     - J- (tan -£   +   5- tan3   -£) (86) p o 2n   \ 2 3 2/ 

1 • 1 /I  /  \ ml 1  • 1 2 • 1 •        2 where   n   is given by (3D).    The coordinates   y     ,  y     ,  y     ,  y        are given 

by (32) and (41) for use in determining   ou . 

IV-B.    Elliptic Motion 

We now suppose that 0 s e < 1 and a > 0 . If e < e , where 

e   is an accuracy constant, we set   e   =   0   identically for the circular case. 

If e = 0 , we would take t = t and for use in determining ou 

assume that 
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1 
yo      = 

r o 

2 
yo      = 0 

.   1 
yo      = 0 

.   2 
y~   = V (87) 

If   e   /   0,    we differentiate (46) with respect to time to obtain 

dr                            d F         na    e sin F ,__. 
dT   =   ae 8in § dt     =    r" *- <88> 

by (56).    Since 

dr r  .  v 

this gives at the initial time 

dt r <89> 

r     •  v 
sin §   =    -2^  (90) 

na   e 

Further,   (46) can be put in the form 

, r 
cos F,   =   ±-(1 --£) (91) 

Then the time   t      of perigee passage is given by (47) in the form 
} 

t      =    t    -    -  (F - e sin F) (92) 

12 12 
and   y     ,  y     ,  y     ,  y        are given by (52),   (53),   (57),   (58) for use in deter 

mining   cu . 
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IV-C.    Hyperbolic Motion 

We now suppose that   e   >   1    and   a   <  0 .    Differentiating (62) with 

respect to time we obtain 

dr         II         .   ,   .df          n|a|" e sinh g . —   =    |a|   e sinh §5*-   =   -L-L_  (93) 

by (70) .    Using (89),  we have at the initial time 

sinh?   =      °     2 ° (94) 
n |a |     e 

Further,   (62) can be piit in the form 

, r 
cosh §   =   - (1 + —) (95) 

e a 

Then the time   t      of perigee passage is given by   (63) in the form 

t     =   t     -  -   (e sinh ?  -   S) (96) 
p o n 3 • 

1 2     •   1      •   2 
and   y     ,   y     ,  y     ,   y        are given by (67),   (68),   (71),   (72) for use in deter- 

mining   (ju . 

V. LAMBERT PROBLEM FOR THE TIME OF TRAVEL 
BETWEEN TWO POINTS IN A CONIC SECTION ORBIT 

Lambert's problem is to determine the elements    (p,   e,   I,  ,0,  cu,  t   ) 

of the conic section orbit which has position vectors    r 1    at time   t.    and 

r      at time   t_    with   t.    <  t    .    We shall consider a variation on the prob- 

lem in that we shall take 

rl   '    Vl    =     'vl I   '    h   '    r2 (97) 

as given and determine the elements    (p,   e,  I,  Q, uu,  t  )   and the time of 

flight    (t?   —   t. )   from   r      to   r 
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If   r2   and   r,    are parallel   (r2   =   kr1    with   k   ^   0),    then we have 

the case of straight line motion with elements easily determined by the 

formulas in section III-D.    If   r      and   r      are anti-parallel   (r      =    kr. 

with   k   <  0),    then the orbital plane is indeterminant and there are infinitely 

many orbits  (all with the same elements    p,   e,   t  ,  t.   —   t, )    satisfying the 

conditions  (97). 

Now let us suppose   r]    x   r_    ji   u .     The angle   Q   from   r      to    r 

rotating in the direction of motion is then determined by 

sin 

cos 9   = 

rl Xr2 

rl   *   r2 

1 

(98) 

where the   +    sign is used if   0   <  9   <  2TT  and the   —   sign is used if 

TT  <  9   <  2rr .    Since we are concerned with rapid intercept orbits,  we shall 

assume   0   <  8  <  TT  in the program,  although for the sake of completeness 

we shall allow both cases in the formulas that follow.     The distance    c 

between the points    r.    and   r_    is given by 

2 2 _-. 
=    rl      +   r2      -   2rl •   r. (99) 

The unit vector normal to the orbital plane is 

A 
G 

x 

rl    x   r2 

(100) 

where the   +    sign is used if   0   <  9   <  TT  and the   —   sign is used if 

TT  <   9   <   2TT .     The inclination   I   and ascending node   Q  are determined 
A 

from   G   by formulas analogeous to (15) and (16). 
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By (29),  the semi-major axis   a   is 

1_ 
a M 

(101) 

and the unknown magnitude of velocity   v      is 

v2      =   M (JL - ^ (102) 

If the right side of (102) is negative or zero,  a conic section orbit satisfying 

(97) does not exist.    By (29) and (33) we have 

•  2 up 2 
r.      + -=-%   =    v. ,        1=1,2, l 2 I ' ' (103) 

r. 
I 

Now consider unit vectors    e, ,    €      in the orbital plane with   ~e 

pointing towards perigee and with   £_   normal to   e]    pointing in the direc 

tion of motion at perigee.    We have 

1 - 2 - . ,    „ 
•i   =   Y{   Cj   +   y.    e2      ,      i   =   1,2 (104) 

12 3 -> 
If   (x.   ,    x.   ,    x.   )    are the components of   r.    in the usual coordinate system, 

(30) gives 

Xi
j    =   ^   bjky.k       ,        i   =    1,2    ;   j   =    1,2,3 (105) 

Solving for   b.,   ,    we obtain 
Jk 

 1    /    j     2 j      2^ 
>jl    = 1      2 HT    xl ^2      ~   x2   ^1 

7i y2  - y2 *i     V 

i 
h3v 

i 
j2   ~        12 12      12 yl 

?i y2 - ^2 ^i    v 

X 
1*2 

j    =    1,2,3 

(106) 
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The argument of perigee   a)   could then be determined by   (82) and (83) if 
1 2 u y.   ,   y.      were known. 

To recapitulate, we are given values of the parameters (97) from 

which we determined   I ,    fi,    a   and   v    .    In order to determine    (p,   e, tu, 

t   ,   t?)   we shall have to consider separately the cases of parabolic motion 

(a   =    oo )t    elliptic motion    (a   >   0)    and hyperbolic motion    (a   <  0)   making 

use of relations (98) through (106). 

V-A.      Parabolic Motion 

If   a   =   oo   so that   e   =    1,    we have by (35) 

7   +• 
r.   =   -r-r* r-   =   §• sec" 4"     •       »   =    1»2 <107) I        1 + cos ijr. 2 2 

Then by (34) and (107) 

r.   =y[^   sin i)f.       ,       i   =    1,2 (108) 

so that by (107) and (108) 

cos to.    =   -2.   _   i 
*i r. 

I 

sin ilf.    =  V°      r- 

From (37) and (38) we obtain 

1 /       *i 1        3 *i\ 
n(t.   -  t  )   =   ^ (tan "T"    +   Ttan    "2/       '        i   =    1,2 (110) 

i   =    1,2 (109) 

with 

^2   -   *j (HI) 
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By (32),   equations (104) take the form 

r.   =    r. cos I. £.    +   r. sin i|/. e0       ,       i   =    1,2 
I I *i    1 i fi    2 

so that by (99) 

2 2 2 
c     =    rl      +   r2     -  Zr^ cos(i|f2   -   ij/j) 

2 2/*2  " *Ji =  (ri  + n2)   - 2rin2 COB^-V-J 

which implies 

, ,        fh - ii\ . . 
2^TJ   cos I   c 2     XJ  =    ±>/(rl    +   r2   +   C)    (rl    +    r2   ~   C)' (H2) 

where the   +    sign is used if   0   =    \|j_   —   iK    < rr and the   —   sign is used if 

9   =    i|r_   —   i|f,    >  rr   .    Substituting (107) into the left side of (112) we obtain 

.  . .   *i .   h     ,V(ri + r
2 

+ c> <ri + rz-c)l    ,„,. 1    +   tan -r- tan ^-   =    ±       (113) 
C L p 

It also follows from (107) that 

2.L        f    2*1 „    2*2\ rl    +    r2   =    2 I2   +   tan    T    +   tan    TI 

The last two equations give 

(rj    +   r2   +   c)   +    (rj    +   r2   -   c)   T   2^(rj    +   r2   +   c) (r}    +   r2   -   c) 

/    h h\Z 
=     tan -y   -   tan — 
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which implies 

V^l    +    r2    +    C'TVrl    +    r2   ~   c *2 ^ 
=   tan -r-   —  tan -*- 

(114) 

Subtracting the equation of (110) with   i   =    1    from the one with   i   =    2    , 

we obtain 

/      <c2 n\ 
6n(t_    —   t. )    =    (tan -s-   —   tan -s-J 3 [1    +   tan -r- tan — 

/       *2 M +    Itan —   —   tan -~- (115) 

Equations (36),   (113),   (114) and (115) yield 

,1/2, 6U   /   (t2   -   tj)   =    (r 
3/2 

+   rn   +   c)   '      T  (r.    + ~P       T   (r2    +   r2   -  c)3/2        (116) 

where the   —   sign is used if   0   <  9   < n  and the   +    sign is used if 

n  <  9   <  2TT .     This result,   determining   t?    in terms of   t. ,    is called 

Euler's equation for parabolic motion and is given in Ref.   3,   pp.   157-158. 

By   (109) we have 

sin 
tan 

so that (114) becomes 

1  + cos 

r.r. 
I   I 

T/MF 
(117) 

r2r2   ~   rlr *i =>F\J ri + r2 + c' TV^7 +   r. H (118) 
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Equations (111),   (113),   (11 7) and (118) yield 

tan 2   =    tan 
*2 + 1 1  + tan -=- tan — 

-V ±vrl+ r2 + c' -Vri + r2 - c' 

V^T + r2 + c) (rx + r2" c)' 

(119) 

where the   +    sign of the   ±  is used if   0   <  9   < TT  and the   _   sign is used if 

rr <  6   <  2TT .    All the quantities in (119) except   p   are known,   so that (119) 

determines    p .     Then   f, ,    r_    are determined by (103) in the form 

r. 
l ^ifT^-H^1^  - i   =   1,2 (120) 

where the    +    sign is used if   t.    <  t      and the   —   sign is used if   t.    >   t e l p B i p 
However,  whether   t.    is before or after the time of perigee   t      is not yet 

I p ' 
h • 1 known,   so   r.    is determined only up to sign.    The tangent of   -=-    is given 

by (117) up to sign and the value of   (t.   —   t   )    is given by (110) up to sign. 

We know that 

(±), 
h       I      3 h tan -=-    +   rr- tan    -«- "   (±)- 

•l 13+1 
tan -~-   +   rr tan    -=- 2n(t2   -  tj) 

(121) 

where the right side is known from (116).    In general there is only one 

combination of signs which will make (121) valid,   so we may regard the 

+i sign ambiguity for    r.   and   tan -=-    as resolved.     Then   t      is determined by 

(110),    cos l|f.    and   sini|/.    by (109),    y.J   by (32) and   cu   by (106),   (82) and (83). 
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V-B.      Elliptic Motion 

If   a   >   0    so that   0   ^   e   <  1   we have by (46) 

r.    =   a(l   -  e cos §.)       ,       i   =    1,2 (122) 

Then by (56) and (122) 

*/fia' e sin g. 
r.   =  ^       ,       i   =   1.2 (123) 

1 ri 

Equations  (122) and (123) can be written 

r. 
e cos §.    =    1    —  — 

i   =    1,2 (124) 
r.r. 

e sin ^ • 1   v^ 

'l -)      +     i     i ,       i   s   1,2 (125) 

Squaring these equations and adding we obtain 

2 2.  2 

+   — a / |ja 

Kepler's equation (47)  implies 

n(t.    -   t   )    =   5.   -   e sin §.       ,        i   =    1,2 (126) 

By (52) and (53) equations  (104) take the form 

I 21 

r.    =    a(cos ?.   —   e) e,    +   a\l    —   e     sin F. e0       ,        i   =    2 
i *i 1 l    2 
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so that by (99) 

2 2 2 2 2 2 
c      =   a   (cos §?   —   cos ?.)      +   a   (1    —   e   ) (sin §2   —   sin^j) 

=   4a 
[             2          2   £l    +   5J1     .   2  £2   ~   5l) 

1   —   e    cos      _• —I  sm      =  (127) 

It follows from (122) that 

r,    +   r2   =   2a 
r.       «•+ 

1    —   e cos    — ?2> 
cos 

(§2   -  5 

^ 

(128) 

Subtracting the equation of (126) with   i   =    1    from the one with   i   =    2 

we obtain 

n(t2   -   tj)   =    (§2   -  gj)   - 2 e cos 
(?!    +   §2) (§?   -  5l) 

sm 

(129) 

Continuing to follow Ref.   7,  we define the angles   a   and   P   by 

(a   +   P)                        (?1    +   §z) _ a        ,     » cos J 2   
r/    =    e cos  0   s   a   +   (3   <  2n 

a   -   (3       =?2_^1~   2mTT 0    ^   a   -   (3   <   2TT 

(130) 

where   m   is the number of complete circuits made between times    t     and   t2 

Inequalities  (13 0) imply 

0   ^  a   <  2TT      ,       -TT^P<n (131 

Equations  (127),   (128) and (129) become 

c •     (a   +   (3)      .     (a   -   (3) •=—   =    sin -—— sm —"- 
2a 2 2 

(132) 

38 



rl    +    r2 , (a   +    P) (a   -   P) ,, -,,  x    =    1    —   cos -1       ;   cos  v      "' (133) 

n(t2   -  tj) =   2mn  +   Q   -   P   -  2 cos (a   +   P)   sin (a P) 

(134) 

There is no ambiguous sign in (132) because by (130) 

a   +   P                                •     (a   +    P) 0   £  —^—       < TT      ,        sin J —^   *   0 

0   S  S_Z_£  < n      ,        sin (a   7  ?>    >   0 (135) 

Equations (132) and (133) imply 

a Vl    +    r2    +    C' 
sin 2    - 

2VT 

6 ^Vrl    +    r2   ~   C' 
sin 2   - 

(136) 

(137) 

so that   a   and   p   are determined in terms of the known quantities    r, ,     r_, 

c   and   a,    except for ambiguity in sign in (137).     There is no ambiguity 

in (136) because of (131).    If either the right side in (136) or that in (137) 

are greater than   1    in absolute value,  then an elliptic orbit passing through 

the two given points with the given magnitude of velocity at the first one 

does not exist.    Equation (134) can be written in the form 

n(t2   -   tj)    =    2mn  +    (a   -   P)   -   (sin a   -   sin P) (138) 

which is called Lambert's theorem in Ref.  4,  p.  51.    We have thus 

determined the time   t~    except for the number   m   of revolutions and the 

ambiguity of sign in (13 7).     For the rapid intercept problem of interest to 

us we can assume   m   =    0 . 
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By (111) and (49) we have 

tan ~-   =    tan 
*2  " *1 

•2 *1 tan — - tan — 

1 + tan -5- tan — 

\1   - e      tan -=- - tan -=- 

?2 
(1   - e) + (1  + e) tan -5- tan 

\h" S2 M .    M b2 \1   - e        sin -=- cos -^-  - sin —- cos -=- 

*2 M ^2 bl (1   - e) cos -*- cos -=- + (1  + e) sin -~- sin — 

\h 21     . \1   - e       sin 
h-h 

r^ ?9    -S »2      *1 
cos V ^ 1  -   e cos 2      / 

By (130) this becomes 

tan § 
xr    2~> . 
\1   - e    sin m 
os (-2-^  - cos (-^J 

\1   - e      sm 

, a    .    (3 
2 sin T sin & 

(139) 

Thus by (135),   (136) and (139) we can resolve the sign ambiguity in (137) 

as follows: 

(i)       0   < 0  < TT   -»  sin &• >  0 

(ii)      TT <  9  <  2n ->   sin |-  <  0 
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We now calculate the remaining elliptic orbital elements.     The 

eccentricity   e   is determined by solving (139),   obtaining 

..     2 0    .2a     .  2 P _ 4 tan   rsin    =- sin    y 

sin     (-^) 

The semi-latus rectum   p   is given by (27).     The quantities    r,    and   r?    are 

determined by solving (125),   obtaining 

\ - wi^-V"2 - (»- xf • «•]-2 (141) 

where the ambiguous sign    (±).    for    r.    is to be resolved.    The values of 

sin §.    (with ambiguous sign    (±).)   and   cos §.    are given by (124) if   e   >   0 . 

Subtracting the equation of (126) with   i   =    1    from the one with   i   =    2   and 

comparing with (130) and (138) we have 

(±)2|.inS2|    "   Wjl-inSjl    =    Sln a
e~ Sln P d42) 

In general there is only one combination of signs which will make (142) 

valid,   so we may regard the sign ambiguity as removed. 

Knowing    sin §.    and   cos §.    (i   =    1,2),    we can determine   §,    and 

§2    subject to the restriction provided by the second equation of (130) with 

m   =    0   in the rapid intercept case.     Then   t      is determined by either 
1 ?2 

equation in (126).     The quantities   y.      and   y.      (i   =    1,2)   are determined 

by (52) and (53),  and the argument of perigee   <x>   is determined by (106),   (82) 

and (83). 

If   e   =    0   or    e   <  e ,    where   e   is an accuracy constant depending 

on the number of places in floating point computations on the computer being 

used,  we are in the circular case with   r,    =    r_    and would set   e   =    0 

identically.    Since there is no perigee point,    t      is arbitrary,   so we can 
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take   t     =   t,   .    We have 
P 1 

1 
Yj     =   rj 

1 
y_      =    r.   cos 8 

y2      =    rj  sin 0 (143) 

and the argument of perigee   ou   is determined by (106),   (82) and (83). 

V-C.      Hyperbolic Motion 

If   a   <  0    so that   e   >   1    we have by (62) 

r.   =    |a|(ecosh§.   -   1)       ,       i   a    1,2 (144) 

Then by (70) and (144) 

•J\d I a |'    e sinh §. 
r.    =3- *-       ,       i   =    1,2 (145) 

I r. 
I 

Equations  (144) and (145) can be written 

r. 
e cosh 5.   =    1    +   T— 

-i a 

r.r. 
e s mh % . 

1,2 (146) 

1   V^T 

42 



Squaring these equations and subtracting the second from the first we obtain 

/ ,2 2.  2 
/ r. \ r.   ri 
1 + FT   " 1IUT   ' 1,2 (147) 

Kepler's equation (63) implies 

n(t.   -  t  )   =    e sinh§.   -  g.       ,       i   =    1,2 (148) 

By (67) and (68) equations  (104) take the form 

r.    =    ,a | (e   -   coshg.^Sj    +    |a|Ve      -   1 sinh g. 6       ,        i   =    1, 2 

(149) 
so that by (99) 

c      =     | a |    (coshg2— cosh §,j      +    | a [    (e    —lj (sinh §_ — sinh I*  J 

=   -  4  a [l - e2 cosh2 (• 1  2    2Jj sinh >/§2  " ?1 (150) 

It follows from (144) that 

rj    +   r2   =   2|a 
?1  + ?2\              fil ' §1 e cosh I s )  cosh \ = 1   —   1 

(151) 

Subtracting the equation of (148) with   i   =    1    from the one with   i   =    2   we 

obtain 

"(^   ~   t\)    =    2e coshV 2 '   sinhV 2 /   ~  (?2   ~   ?l) 

(152) 
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We define quantities   a   and   (3   by- 

cosh (2^±-£)    =    e cosh X1 2    2) a + p   >   0 

a   -  P        =§--§. a -p   >  0 

(153) 

Inequalities (153) imply 

a   >   0 
(154) 

Equations (150),   (151) and (152) become 

TTcT =    s *„(-!) .inh^i) (155) 

rl  +r2 
2lal 

:osh(^)cosh(^)   - (156) 

n(t2   -   tj) =    2 cosh(^)  Sinh(5^-P)  -   (a   -   (3) (157) 

There is no ambiguous sign in (155) because by the inequalities in (153), 

the hyperbolic sines are always positive.    Equations  (155) and (156) imply 

sinh y   = 
+ Vrl  +r2 + C' 

2/T 
(158) 

sinh |   = ±^1  + r2  " C 

2>/[i 
(159) 
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so that   a   and   (3   are determined in terms of the known quantities    r    ,    r 

c   and   a,    except for the ambiguity in sign in (159).    There is no ambiguity 

in (158) because of (154).    Equation (157) can then be written in the form 

n(t2   -   t  )   =    (sinh a   -   sinh P)   -   (a   -   (3) (160) 

We have thus determined the time   t_    except for the ambiguity of sign in 

(159). 

By (111) and (65) we have 

*2 *1 
e *2-*i      tan T "tan T tan =•   =    tan 
2 2 *2 *1 

1 + tan -y- tan -=- 

n—> r    ^2 ?ii \e    - 1    tanh -K- - tanh -=- 

(e  - 1) +  (e + 1) tanh -— tanh — 

e cos 

By   (153) this becomes 

"2     P 

V^~2   ' T   ^2     ^1      ^1     ^2l e - 1 sinh -=- cosh -=— sinh -=- cosh -=- 

?2     §1 ^2     ?1 (e - 1) cosh -y  cosh -w- + (e + 1) sinh -5- sinh -=- 

h(iiiii).coshe-4^ 

tanr 

Ve^T?  sinh(^) 

coshl   ?     I - coshl———) 

y[?~? sinh(^J) 

2 sinh =• sinh &• 
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Thus by the inequalities in (153) and (154) we can resolve the sign ambiguity 

in (159) as follows: 

(i)       0   <  9   < TT -   sinh _-  >  0 

(ii)      TT <  9   <  2rr -   sinh fe-  <  0 

We now calculate the remaining hyperbolic orbital elements.     The 

eccentricity   e   is determined by solving (161),   obtaining 

A 4.     2 9     •   x2 a     •   x2 P 2 4 tan    =• sinh   a- sinh   fe- 

e   = ' -^  

The semi-latus  rectum   p   is given by (27).     The quantities    r,    and   r      are 

determined by solving (147),   obtaining 

' (163) 

where the ambiguous sign    (±).    for    r.    is to be resolved.     The values of 

sinh§.    (with ambiguous sign    (±).)   and   cosh§.   are given by (146).    Sub- 

tracting the equation of (148) with   i   =    1    from the one with   =    2 and 

comparing with (153) and (160) we have 

(±)2|sinh§2|    -   (±)l|sinh§1|    =    sinh a^- sinh P (U4) 

In general there is only one combination of signs which will make (164) 

valid,   so we may regard the sign ambiguity as removed. 

Knowing   sinh §.   we can determine   g.  .    Then   t      is determined by 
l j   I 2       P 

either equation in (148).    The quantities   y.      and   y.       (i   =    1,2)   are 

determined by  (67) and  (68) and the argument of perigee   cu   is determined by 

(106),   (82) and (83). 
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VI. LOGICAL FLOW OF THE COMPUTER PROGRAM TO CALCULATE 
TIME TO INTERCEPT VERSUS INITIAL VELOCITY 

1. Initialize constants. 

2. Read input data described in Section I; end program if no 

more data. 

3. Calculate position and velocity of launching site at launch time 

(earth launch uses the formulas in Section II and parking orbit launch uses 

the formulas in Section III-B. ). 

4. For magnitude of velocity   v,    from initial magnitude VLNCHO 

to final magnitude VLNCHl at increments DVLNCH,   calculate and store in 

arrays the following: 

a. Time to intercept the target satellite with given magnitude 

of launch velocity   v,    in the intercept orbit using the formulas in Section V; 

calculated iteratively because the target satellite is allowed to move in its 

orbit between launch epoch and intercept epoch. 

b. Velocity imparted at launch,  which is equal to the vector 

velocity (of magnitude   v. ) in the intercept orbit at launch calculated using 

the formulas in Section III minus the vector velocity  of the launching site. 

c. Position and velocity in the intercept orbit at possible 

midcourse correction epochs calculated using the formulas in Section III. 

5. Plot time to intercept versus magnitude of velocity imparted at 

launch.    A point is deleted from the plot if the time of perigee in the inter- 

cept orbit is between the times of launch and intercept and if the perigee 

distance is less than the radius of the earth  plus,   say,    50   kilometers. 

6. If midcourse corrections are to be considered,   change the target 

satellite orbital elements by the input orbital element errors. 

7. For each original intercept orbit calculated in    (4.)   and each 

midcourse correction epoch with midcourse launching position and velocity 

calculated in    (4c. ),    do the following: 
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a. For magnitude of velocity   v.    from an initial to a final 

magnitude at given increments calculate and store in arrays the following: 

i.    Time to intercept the new target satellite with 

given magnitude of midcourse launch velocity   v,    in the intercept orbit 

using the formulas in Section V; calculated iteratively because the target 

satellite is allowed to move in its new orbit between midcourse correction 

epoch and intercept epoch. 

ii.    Velocity imparted at midcourse correction which 

is equal to the vector velocity (of magnitude   v. )   in the new intercept orbit 

at the midcourse epoch calculated using the formulas in Section V minus 

the vector velocity in the original intercept orbit at the midcourse epoch. 

b. Plot time from midcourse correction to intercept versus 

magnitude of velocity imparted at midcourse correction.    Points are deleted 

which,   by the criterion described in   (5.),   represent intercept orbits inter- 

secting the earth's atmosphere. 

8.    Go to    (2. ). 
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